

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Object-oriented programming

Course

Field of study

Bioinformatics

Area of study (specialization)
-

Level of study
First-cycle studies
Form of study

full-time

Year/Semester

1/2

Profile of study

general academic

Course offered in
Polish

Requirements

compulsory

 Number of hours

Lecture

30

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

5

Lecturers

Responsible for the course/lecturer:

dr hab. inż. Piotr Łukasiak, profesor PP

e-mail: Piotr.Lukasiak@put.poznan.pl

 tel.: 61 665 3033

Faculty of Computing and Telecommunications

ul.Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

The student starting this module should have basic knowledge of algorithms and programming

languages. In terms of skills, proficiency is required in solving basic problems related to the specification

of algorithms, independent writing, modification and testing of computer programs, along with the

ability to obtain information from the indicated sources.

Course objective

 The aim of the course is to teach the principles of creating universal program modules that are reusable

in various programming projects and are easy to develop and maintain, through the use of unique

algorithmic and programming solutions available in object-oriented languages, based on C ++ as an

example. In addition, the aim is to teach students to create their own semantically rich and universal

2

abstract data types, as well as to develop students' skills in designing and creating information systems

with the correct architecture characterized by the cohesiveness of component program modules and

relationships between these modules. An essential goal of the course is to educate students of

communication skills during the independent development of computer program modules and to search

for optimal components that can be used in their own complex computer programs.

Course-related learning outcomes

Knowledge

The student knows and understands the principles of structured and object-oriented programming

The student knows and understands the basic methods, techniques and tools used in the process of

solving bioinformatics tasks, mainly of an engineering nature

The student knows and understands the life cycle of information systems

Skills

The student is able to obtain information from literature, databases and other properly selected

sources, also in English

The student is able to integrate and interpret the obtained information, as well as draw conclusions and

formulate and justify their opinions

The student is able to design and create computer software in accordance with the given specification,

using appropriate methods, techniques and tools

The student is able to analyze the functionality and analyze the requirements of information systems

The student is able to independently acquire knowledge and improve his qualifications

Social competences

The student is ready to learn throughout his life and improve his competences

The student is ready to cooperate and work in a group, assuming different roles in it

The student is ready to define priorities for the implementation of a task defined by himself or others

The student is ready to take responsibility for the decisions made

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

The learning outcomes presented above are verified as follows:

Formative assessment:

a) in the field of lectures:

• activity during lectures

b) in the field of exercises:

3

• on the basis of the assessment of the current progress in the implementation of tasks and the final

project

Summative assessment:

a) in the field of lectures, verification of the assumed learning outcomes is carried out by assessing the

knowledge and skills shown on the written test, and discussing the results. The test consists of a set of

open and closed questions regarding the skills and understanding of the elements of object-oriented

programming on practical instances

b) in the field of laboratories, verification of the assumed learning outcomes is carried out by continuous

assessment during each class (oral answers), rewarding the increase in the ability to use the learned

rules, methods and program tools and evaluation of the implementation of final projects

Programme content

The lecture program includes

• premises of object-oriented programming,

• the idea of a new programming paradigm that supports the creation of high-quality programs.

• searching for the optimal programming language and methodologies appropriate for building

universal program modules for multiple use

• relations of the object-oriented paradigm with software engineering

• quality metrics for computer program architecture: cohesion and independence of program modules

• implementation of the concept of abstract data types

• learning about the basic constructors of the object model: class, object, class variables and operations,

generalization relationships, relationships between classes

• examples of simple models of fragments of reality

• definitions of basic object concepts: object, attributes (variables) of the object, methods of the object,

• sending messages triggering calls to methods of objects, class interfaces, objects as instances of

classes

• examples of class definition including: definitions of class constructors and destructors, overloaded

operators, class variables and methods

• hermetic implementation of classes as a mechanism for limiting relationships between program

modules

• a friendship relationship between classes

4

• comparing solutions to simple problems in a functional and object-oriented way

• implementation of complex objects and relationships between objects

• class inheritance and subtype relationship between classes

• definition of new features of derived classes, overriding methods and variables, implementation of

abstract classes

• virtual inheritance in C ++

• class constructor and destructor inheritance

• defining polymorphic variables and polymorphic substitutions

• implementation and examples of the use of the late binding mechanism

• dynamic data type casting

• increasing the degree of universality of classes by defining generic classes

• limits of applicability of generic classes: limited and unlimited genericity

• typical examples of generic classes

• C ++ class patterns

• creating reliable computer programs

• code security levels

• basic strategies for creating error- and exception-resistant programs

• methodology and techniques for handling exceptions in object-oriented languages

• defining and throwing exceptions, catching exceptions and handling them

• examples of the use of exception handling.

Teaching methods

Lecture:

multimedia presentation, presentation illustrated with examples given on the board, solving problems,

multimedia show

Laboratory exercises:

solving tasks, practical exercises, discussion, team work, multimedia show

5

Bibliography

Basic

1. Programowanie zorientowane obiektowo, Bertrand Meyer, Helion, Warszawa, 2005

2. Metody obiektowe w teorii i praktyce, Ian Graham, WNT, Warszawa, 2004

3. Język C++, Bjarne Stroustrup, WNT, Warszawa, 1994

4. Programowanie obiektowe, Peter Coad, Edward Yourdon, Read Me, 1994

5. Analiza obiektowa, Peter Coad, Edward Yourdon, Read Me, 1994

6. Nowoczesne projektowanie w C++, Andrei Alexandrescu, WNT, 2005

Additional

1. B. Eckel, Thinking in C++, HELION, 2002

2. Nicolai M. Josuttis, C++ Biblioteka standardowa, Podrecznik programisty

Breakdown of average student's workload

 Hours ECTS

Total workload 125 5,0

Classes requiring direct contact with the teacher 60 2,5

Student's own work (literature studies, preparation for
laboratory classes/tutorials, preparation for tests/exam, project)

1

65 2,5

1
 delete or add other activities as appropriate

